
DYNAMIC BINARY NEURAL NETWORK BY LEARNING CHANNEL-WISE THRESHOLDS

Jiehua Zhang1 Zhuo Su1 Yanghe Feng2 Xin Lu2 Matti Pietikäinen1 Li Liu2,1

1 CMVS, University of Oulu
2 National University of Defense Technology

ABSTRACT

Binary neural networks (BNNs) constrain weights and activa-
tions to +1 or -1 with limited storage and computational cost,
which is hardware-friendly for portable devices. Recently,
BNNs have achieved remarkable progress and been adopted
into various fields. However, the performance of BNNs is sen-
sitive to activation distribution. The existing BNNs utilized
the Sign function with predefined or learned static thresh-
olds to binarize activations. This process limits represen-
tation capacity of BNNs since different samples may adapt
to unequal thresholds. To address this problem, we propose
a dynamic BNN (DyBNN) incorporating dynamic learnable
channel-wise thresholds of Sign function and shift parame-
ters of PReLU. The method aggregates the global informa-
tion into the hyper function and effectively increases the fea-
ture expression ability. The experimental results prove that
our method is an effective and straightforward way to reduce
information loss and enhance performance of BNNs. The
DyBNN based on two backbones of ReActNet (MobileNetV1
and ResNet18) achieve 71.2% and 67.4% top1-accuracy on
ImageNet dataset, outperforming baselines by a large margin
(i.e., 1.8% and 1.5% respectively).

Index Terms— deep learning, binary neural networks,
network compression, computer vision, image analysis

1. INTRODUCTION

With the great progress made in deep learning in recent years,
convolutional neural networks (CNNs) have achieved state-
of-art performance in a broad range of fields. However, the
existing CNNs require massive computation and storage re-
sources to achieve high performance, which is not hardware-
friendly to resource-limited devices. The Binary neural net-
works (BNNs), also known as 1-bit CNN, has two key advan-
tages: 1) it constrains weights and activations to +1 or -1 to
achieve a 32x memory compression ratio; 2) it utilizes XNOR
and PopCount operations to replace computationally expen-
sive multiply-add, providing a 58x computational reduction
on a CPU [1, 2, 3, 4, 5, 6]. Due to these attractive characteris-
tics of BNNs, it has been regarded as one of the most essential
neural network compression methods to have the potential for
direct deployment on next-generation hardware [4].

(a)

Feature map Output of RSign Output of DySignOriginal image

(b) 

(c)

Fig. 1. The output of different samples after RSign and
DySign. A set of fixed thresholds in RSign is insufficient
to diverse samples. For (a), the fixed threshold can retain the
feature information of object. For (b) and (c), the feature in-
formation significantly decrease.

Despite these advantages of BNNs, the enormous accu-
racy gap exists between BNNs and real-valued CNN since
binarized operation limits model capacity and leads to a sig-
nificant information loss of feature maps. To address this
problem, Bi-RealNet [5] introduced a shortcut operation to in-
crease value range of network, achieving remarkable perfor-
mance improvement compared with XNOR-Net [7]. Based
on this, Liu et al. [4] proved that BNNs are sensitive to ac-
tivation distribution shift. A small distribution value offset
close to zero would cause the binarized feature map to have
a distinct appearance, leading to significant degradation of
predictive accuracy. They proposed a generalization of Sign
function (RSign) and PReLU function (RPReLU) to shift the
distribution of feature maps. The proposed ReActNet based
on MobileNetV1 [8] achieved the top-1 accuracy closed to
real-valued network on ImageNet dataset [9] with lower com-
putational cost.

However, the Sign functions in these methods apply pre-
defined or learned static thresholds for adjusting activation
distribution. They process the different inputs in a fixed way.
The distribution of samples exists a huge gap, which means

ar
X

iv
:2

11
0.

05
18

5v
1 

 [
cs

.L
G

] 
 8

 O
ct

 2
02

1



fixed shift parameters are incapable of adapting to a broad
range of samples. Shown as in Figure 1, the fixed threshold
fits with image (a) but leads to the disastrous information loss
for image (b) and (c). Inspired by [10], we introduce dynamic
learnable shift parameters based on the input feature distribu-
tion for BNNs to enhance the feature expression ability.

Our contributions are summarized as follows:

• We propose Dynamic Binary Neural Network (DyBNN)
to generate diverse shift parameters based on feature
distribution of the input itself. The DyBNN incor-
porates channel-wise dynamic learnable thresholds
of Sign function (DySign) and shift parameters of
PReLU (DyPReLU ). These parameters are both
learned by a dynamic learning branch consisting of a
global average pooling layer and two fully-connected
layers. The global information of each channel is ag-
gregated into the hyper function and generates a set
of learning shift parameters to enhance the feature
expression ability.

• We demonstrate the effectiveness of DyBNN on the
ImageNet dataset. Without bells and whistles, simply
replacing static RSign and RPReLU with DySign and
DyPReLU in two networks (ReActNet and ReAct-
Net based on ResNet18) achieves 71.2% and 67.4%
top1-accuracy, outperforming strong baselines 1.8%
and 1.5% by a large margin, respectively.

2. METHODOLOGY

In this section, we first introduce the BNNs and then present
the influence of fixed thresholds in Sign function. Finally, we
illustrate our DyBNN how to reduce the information loss and
enhance the model expression ability.

2.1. Preliminary

For the convolution process in the BNNs, we denote the
weights and features in the l -layer as W l and F l. The input
of the l+1 -layer can be expressed as:

F l+1 = φl(Sign(W l)⊗ Sign(F l)) (1)

Sign(x) =

{
+1, x > 0,

−1, x ≤ 0.
(2)

where ⊗ denotes convolutional operation, the φl(·) denotes
the nonlinear operation in the l -layer such as ReLU, PReLU,
and BN layer. To reduce the memory saving and computa-
tional cost, the BNNs constrain the W l and F l to -1 or +1 by
Sign function.

However, BNNs are sensitive to distribution shift since
the activations are constrained to +1 and -1. A slight distribu-
tion shift in the input feature map can significantly affect the

1bit 3×3 Conv

BN

DyPReLU

1bit 1×1 Conv

BN

DyPReLU

1bit 1×1 Conv

BN

DyPReLU

Global Avg Pool

FC 

FC 

Global Avg Pool

FC

FC 

x x

(a) ReActNet Block
Using Proposed Method

(b) DySign (Proposed) (c) DyPReLU (Proposed)

DySign

DySign DySign

C

2×2
Avg Pool

Fig. 2. The basic modules of proposed DyBNN (built on the
ReActNet).

output of Sign function. To address this problem, the ReAct-
Net [4] utilized learnable channel-wise thresholds to shift the
feature maps, which is defined as RSign:

RSign(xi) =

{
+1, xi > ai,

−1, xi ≤ ai.
(3)

where xi denotes the element of i -th channel in input feature
map, ai denotes the threshold of i -th channel, which illus-
trates that the threshold can vary for different channels. The
PReLU function is also processed by this operation to reshape
the feature map, which can be expressed as:

RPReLU(xi) =

{
xi − γi + ζi, xi > γi,

βi(xi − γi) + ζi, xi ≤ γi.
(4)

where γi and ζi denote the learnable shift parameters for re-
shaping the distribution. By introducing the activation dis-
tribution shift and reshape, ReActNet achieves a significant
increase in image classification.

2.2. Dynamic binary neural network

Although ReActNet achieves remarkable performance, the
feature information loss still negatively affects the perfor-
mance of the BNNs since the RSign adopts a static channel-
wise thresholds on the input feature maps. Each sample
contains a specific feature expression, which means that fixed
thresholds cannot be adapted to a broad range of samples (See
Fig 1). The threshold parameters should be adaptively gener-
ated to shift the feature maps based on the characteristics of
feature.

Based on the aforementioned statement, we propose the
Dynamic Learning Sign Function (DySign) to shift the fea-
ture maps. For a given input feature map X with C channels,



the DySign is defined as a function with learnable parame-
ters f(x), which adapts to the input X (See Fig 2). The hy-
per function f(x) computes the threshold for each i th-channel
feature Xi, which can be expressed as:

α = f(X) = f2(f1(
1

HW

∑
H,W

X)) (5)

where H and W denote the height and width of input feature
map X , f1 ∈ RC× C

16 and f2 ∈ R C
16 × C denote two fully-

connected (FC) layers. The DySign binarized the feature
maps based on the parameters α1:C from f(x) as following:

DySign(xi) =

{
+1, xi > αi,

−1, xi ≤ αi.
αi ∈ α1:C (6)

where αi denotes the threshold of i -th channel, which is
the i -th element of output vector from f(x). The DySign
adopts a SEBlock [11] to learn a set of channel-wise thresh-
olds from the input feature maps for Sign function. The
block of DySign can be observed in Fig 2. The process
is “input → GAP → FClayer → FClayer”. To avoid
over-fit and reduce extra computational cost, the reduction
ratio between two linear layers is set as 16. This hyper func-
tion encodes the global information of input F to determine
appropriate thresholds of each channel. DySign reduces the
feature information loss in BNNs and enables significantly
more representation power than using standard Sign function.

We also handle the RPReLU function [4] in the same way.
The shift parameters γ1:C and ζ1:C are learnable based on in-
put feature maps (DyPReLU ). The hyper function f(·) gen-
erates the shift parameters for each channel in input feature
maps. This process can dynamically shift and reshape fea-
ture the distribution, which is an effective and simple way to
increase model capacity.

Essentially, the DySign can learn the most suitable
thresholds α1:C to binarize the input feature map. The thresh-
old parameters can be dynamically adjusted for different
input feature maps, which can effectively limit the feature
information loss after binarization. For DyPReLU , the γ1:C

and ζ1:C can be easily understood as these parameters are
dynamically generated to obtain better output distribution.
By introducing these functions, the aforementioned problem
risen by static parameters can be eliminated. The BNNs can
retain more object information and learn more meaningful
features. In the experiment section, we will show that dy-
namic learning distribution is an effective and straightforward
way to boost the performance of BNNs.

2.3. Model architecture

For model architecture, The ResNet18 [12] and MobileNetV1
[8] are built as the backbones following ReActNet [4]. In the
ReActNet (Shown as in Figure 2), the 3×3 depthwise and
1×1 pointwise convolution are replaced by standard 3×3 and

1×1 convolution. The duplication and concatenation opera-
tions are designed for addressing the channel number differ-
ence. In our case, we simply replace the RSign and RPReLU
functions in ReActNet with our DySign and DyPReLU .
The ReActNet can be regarded as the baseline in our experi-
ment.

2.4. Computational complexity analysis

Following the calculation method in [13, 4], we calculate total
operations (OPs), which consists of binary operations (BOPs)
and floating point operations (FLOPs). The OPs can be ob-
tained as:

OPs =
BOPs

64
+ FLOPs (7)

For our DyBNN, we do not introduce extra binary convo-
lutional operations. Thus, the BOPs is same as ReActNet.
The increased computational consumption mainly comes
from floating-point operations in DySign and DyPReLU ,
including one global average pooling layer and two fully-
connected layers. For reducing introduced computational
cost, we set the reduction ratio between two fully-connected
layers as 16, which can limit the introduced model parameters
and float operations. We denote the size of input feature map
as C × H × W . The FLOPs for each RSign and RPReLU
increase C + C2

8 and 2× (C + C2

8 ). The extra computational
cost is small compared with the total cost.

3. EXPERIMENT

To evaluate the performance of dynamic distribution learn-
ing on BNNs, we conduct experiments on ImageNet dataset
[9]. In this section, we first introduce the training dataset
and details. We then report the accuracy and OPs of DyBNN
and compare them with state of the art methods. We analyze
the impact of DySign and DyPReLU in the ablation study
shown in Section 3.4.

3.1. Datasets and implementation details

The ILSVRC12 ImageNet classification dataset [9] is utilized
to evaluate proposed method. The ILSVRC12 ImageNet
classification dataset contains 1.2 million training images and
50,000 validation images across 1000 classes, which is more
challenging than small datasets.

The training strategy utilizes the two-step training strategy
described in [13]. In the first step, the network is trained from
scratch with binary activations and real-valued weights. In
the second step, the network inherits the weight from the first
step and trained with binary activations and weights. For both
steps, we follow the training scheme in [4]. We use Adam
optimizer and a linear learning rate decay to optimize model.
The initial learning rate is 5e-4, and batchsize is set to 256.
We also train a quick version of DyBNN with the one-step
training strategy.



3.2. Experiment on ImageNet

We compare the DyBNN with other state-of-the-art bina-
rization methods in Table 1. Compared with ReActNet and
ReActNet-ResNet18, the DyBNN and DyBNN ResNet18
achieve 1.8% and 1.5% increase, respectively. Due to the
introduced global average pooling layer and fully-connected
layer, the FLOPs increases slightly. For DyBNN, the OPs is
0.02 × 108 higher than ReAcNet (See Tabel 2), which is ac-
ceptable. With the limited computational cost increased, the
DyBNN can outperform previous methods by a large margin,
which illustrates the effectiveness of dynamic learnable shift
parameters in BNNs.

Table 1. Compare of the top-1 accuracy with state-of-art
methods. The W/A denote the number of bits in weight and
activation quantization. The blue font denotes the comparing
result with DyBNN and ReActNet based on ResNet18. The
red font denotes the comparing result based on MobileNetV1.

Binary Method W/A
Acc Top-1

(%)
Acc Top-5

(%)
BNN[6] 1/1 42.2 67.1

ABC-Net[14] 1/1 42.7 67.6
XNOR-Net[7] 1/1 51.2 69.3
DoReFa[15] 1/2 53.4 -

Bi-RealNet-18[5] 1/1 56.4 79.5
XNOR++[16] 1/1 57.1 79.9

IR-Net[17] 1/1 58.1 80.0
BONN[18] 1/1 59.3 81.6

NoisySupervision[19] 1/1 59.4 81.7
RBNN[20] 1/1 59.8 81.9

Real-to-Binary Net[13] 1/1 65.4 86.2
ReActNet-ResNet18[4] 1/1 65.9 86.5

ReActNet[4] 1/1 69.4 88.6
AdamBNN[21] 1/1 70.5 89.1

DyBNN-ResNet18(ours) 1/1 67.4(↑ 1.5) 87.4
DyBNN(ours) 1/1 71.2(↑ 1.8) 89.8

3.3. One-step Training

The DyBNN utilizes the two-step training strategy with
512 epochs in total, which is time-consuming. To simplify
the training process, we also evaluate the quick version of
DyBNN in one-step training. The result can be observed in
Tabel 2. We evaluate DyBNN under following strategies: 1)
distillation with distribution loss in [4]; 2) no distillation with
CrossEntropy loss. Following other training details described
in 3.1, DyBNN achieved 2.3% and 2.0% higher than ReAct-
Net under the two training strategies mentioned above, which
illustrated that DyBNN is an effective and straightforward
way to boost performance of BNNs. We also observe that
DyBNN achieves higher accuracy and faster convergence
(See Fig 3). In this paper, The calculation of FLOPs con-
tains BN, PReLU layers, so our reported OPs is higher than
0.87× 108 in [4].

Fig. 3. The accuracy of DyBNN and ReActNet on ImageNet.

Table 2. The test result of a quick version for DyBNN. The
!denotes the model is trained with distributional loss and the
real-valued ResNet34 is set as teacher model. No!denotes
the model is directly trained with Cross Entropy loss.

Network distillation OPs Acc Top-1(%)
ReActNet

0.97× 108
61.0

ReActNet ! 64.3
DyBNN

0.99× 108
63.3

DyBNN ! 66.3

3.4. Impacts of DySign and DyPReLU

In this section, we analyze the individual effect of DySign.
We conduct the experiment in the two-step training strategy
following Section 3.1. The experimental result is shown in
Table 3. DyBNN achieves 70.1% top-1 accuracy on the Im-
ageNet without DyPReLU . Comparing with ReActNet, the
accuracy increases by 0.7%, illustrating the effectiveness of
our proposed DySign. When adding DyPReLU , DyBNN
can achieve 71.2% top-1 accuracy. Shown in Fig 1, DySign
promotes model performance by reducing feature information
loss. Furthermore, DyPReLU increases model expression
ability by reshaping activation distribution of feature maps,
which further improves model accuracy.

Table 3. The impact of DySign and DyPReLU.
Network DySign DyPReLU Acc Top-1(%)

ReActNet 69.4
DyBNN ! 70.1
DyBNN ! ! 71.2

4. CONCLUSION
In this paper, we have introduced the dynamic learning
method into binary neural networks and propose DyBNN.
DyBNN dynamically generates adaptive parameters to shift
and reshape distribution activations. The experimental results
show that DyBNN can reduce the feature information loss
and significantly improve the performance of BNNs with a
limited computational cost increase.



5. REFERENCES

[1] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai,
Jingkuan Song, and Nicu Sebe, “Binary neural net-
works: A survey,” PR, vol. 105, pp. 107281, 2020. 1

[2] Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xian-
bin Cao, Jianzhuang Liu, and David Doermann, “Pro-
jection convolutional neural networks for 1-bit cnns via
discrete back propagation,” ICLR, 2019. 1

[3] Daniel Soudry, Itay Hubara, and Ron Meir, “Ex-
pectation backpropagation: Parameter-free training of
multilayer neural networks with continuous or discrete
weights,” NeurIPS, 2014. 1

[4] Zechun Liu, Zhiqiang Shen, Marios Savvides, , and
Kwang-Ting Cheng, “Reactnet: Towards precise binary
neural net-work with generalized activation functions,”
ECCV, pp. 143–159, 2020. 1, 2, 3, 4

[5] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei
Liu, and Kwang-Ting Chen, “Bi-real net: Enhancing
the perfor-mance of 1-bit cnns with improved represen-
tational capabil-ity and advanced training algorithm,”
ECCV, pp. 722–737, 2018. 1, 4

[6] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio, “Binarized neural net-
works: Training deep neural networks with weights and
activations constrained to +1 or -1,” arXiv preprint
arXiv:1602.02830, 2016. 1, 4

[7] Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi, “Xnor-net: Imagenet classi-
fication using binary convolutional neural networks,”
ECCV, pp. 525–542, 2016. 1, 4

[8] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations,” arXiv:1704.04861, 2017. 1, 3

[9] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
San jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei, “Imagenet large scale visual
recognition challenge,” IJCV, vol. 115, pp. 211–252,
2015. 1, 3

[10] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong
Chen, Lu Yuan, and Zicheng Liu, “Dynamic relu,”
ECCV, pp. 351–367, 2020. 2

[11] Jie Hu, Li Shen, and Gang Sun, “Squeeze-and-
excitation net-works,” CVPR, pp. 7132–7141, 2018. 3

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,”
CVPR, pp. 770–778, 2016. 3

[13] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios
Tz-imiropoulos, “Training binary neural networks with
real-to-binary convolutions,” ICLR, 2019. 3, 4

[14] Xiaofan Lin, Cong Zhao, and Wei Pan, “Towards accu-
rate binary convolutional neural network,” NeurIPS, pp.
345–353, 2017. 4

[15] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou,
He Wen, and Yuheng Zou, “Dorefa-net: Training
low bitwidth convolutional neural networks with low
bitwidth gradients,” arXiv preprint arXiv:1606.06160,
2016. 4

[16] Adrian Bulat and Georgios Tzimiropoulos, “Xnor-
net++: Improved binary neural networks,” BMVC,
2019. 4

[17] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu
Shen, Ziran Wei, Fengwei Yu, and Jingkuan Song, “For-
ward and backward information retention for accurate
binary neural networks,” CVPR, pp. 2250–2259, 2020.
4

[18] Jiaxin Gu, Junhe Zhao, Xiaolong Jiang, Baochang
Zhang, Jianzhuang Liu, Guodong Guo, and Rongrong
Ji, “Bayesian optimized 1-bit cnns,” ICCV, pp. 4909–
4917, 2019. 4

[19] Kai Han, Yunhe Wang, Yixing Xu, Chunjing Xu, Enhua
Wu, and Chang Xu, “Training binary neural networks
through learning with noisy supervision,” ICML, pp.
4017–4026, 2020. 4

[20] Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang,
Yan Wang, Yongjian Wu, Feiyue Huang, and Chia-Wen
Lin, “Rotated binary neural network,” NeurIPS, 2020.
4

[21] Zechun Liu, Zhiqiang Shen, Shichao Li, Koen Helwe-
gen, Dong Huang, and Kwang-Ting Cheng, “How do
adam and training strategies help bnns optimization?,”
ICML, 2021. 4


